
Exact Real Computer Arithmetic

Peter John Potts Abbas Edalat

Departmental Technical Report DOC 97/9

Imperial College

180 Queen's Gate, London SW7 2BZ, United Kingdom

fpjp,aeg@doc.ic.ac.uk

21 March 1997

1 Introduction

Real numbers are usually represented by �nite strings of digits belonging to some digit

set. The real number representation speci�es a function that maps strings to real numbers

or real intervals with distinct end-points. For example, IEEE 754 single precision
oating

point [9] is encoded in 32 binary bits using 1 bit for the sign s, 8 bits for the biased

exponent e, and 23 bits for the normalised mantissa m without the leading 1. The basic

format represents the real number

(�1)s 2e�127 (1:m):

However, �nite strings of digits can only represent a limited subset of the real numbers

exactly because many real numbers have too many signi�cant digits (such as � or
p
2)

or are too large or too small. This means that most real numbers are represented by

nearby real numbers or enclosing real intervals with distinct end-points giving rise to the

notion of round-o� errors. This is generally accepted for a wide range of applications.

However, it is well-known that the accumulation of round-o� errors due to a large number

of calculations can produce grossly inaccurate or even incorrect results. Furthermore,

current
oating point representations in computers have so many bits that veri�cation of

oating point functions cannot be achieved by exhaustively testing every possible input

combination.

Interval analysis [17] has been used to partially circumvent this problem by maintain-

ing a pair of bounding numbers that is guaranteed to contain the real number or interval

in question. However, this interval can get unjusti�ably large and thereby convey very

little information.

Alternatively, by allowing in�nite strings of digits all the real numbers can be repre-

sented exactly. The digits in an in�nite string are normally used to construct a sequence

1

of nested real intervals whose lengths converge to zero. The intersection of these intervals

is a singleton set whose element is the real number being represented.

Furthermore, basic arithmetic operations are only computable if the representation

is redundant. In other words, there must be more than one representation for every real

number.

In the literature, there are broadly speaking three frameworks for exact real computer

arithmetic:

(i) In�nite sequences of linear maps proposed by Avizienis [1] and appeared in the work

of Watanuki et al [23], Boehm an Cartwright [2], Di Gianantonio [5], Escardo [4],

Nielsen et al [18] and Menissier-Morain [16].

(ii) Continued fraction expansions proposed by Gosper [7], developed by Peyton Jones [10]

and Vuillemin [21] and advanced more recently by Kornerup et al [15, 13, 12, 14].

(iii) In�nite composition of linear fractional transformations (also known as homogra-

phies or M�obius transformations) generalises the other two frameworks as demon-

strated by Vuillemin [21]. Nielsen et al [18] showed that this framework can be used

to represent quasi-normalised
oating point [23].

We introduce here a new, feasible and incremental representation of the extended real

numbers based on the composition of linear fractional transformations with either all

non-negative or all non-positive integer coe�cients [20].

Prototypes have been implemented in C++, Java and Miranda.

2 Linear Fractional Transformations

A natural way to represent a real number, r say, is by a sequence of nested rational

intervals f[pn; qn] : n 2 Ng enclosing r such that the sequence of interval lengths converges
to zero [8, 17]:

[p0; q0] � [p1; q1] � [p2; q2] � [p3; q3] � � � �
Let R denote the set of real numbers with the Euclidean topology, R1 the one point

compacti�cation of R and [0;1] the one point compacti�cation of the non-negative real

numbers [0;1). The closed intervals [a; b] in R1 are de�ned as the points from a to b in

the numerically increasing direction, possibly including 1.

Let us make the following convenient de�nitions:

V =

(
a

b

!
: a 6= 0 or b 6= 0

)

M =

8<
:
0
@ a c

b d

1
A :

����� a c

b d

����� 6= 0

9=
;

T =

(
a c e g

b d f h

!
:

����� ax + e cx + g

bx + f dx+ h

����� and
����� ay + c ey + g

by + d fy + h

����� are non-trivial
)

2

Here

����� a c

b d

����� refers to the determinant of the matrix

0
@ a c

b d

1
A, which is ad � bc of

course.

De�nition 2.1 A 0-dimensional linear fractional transformation (lft) with real coe�-

cients is a fraction in R1 , namely a homogeneous coordinate representation of an extended

real number,

t
a

b

! =
a

b
(1)

where

a

b

!
2 V. A 1-dimensional lft with real coe�cients is a function from R1 to

R1 with the general form

t0@ a c

b d

1
A(x) =

ax + c

bx + d
(2)

where

0
@ a c

b d

1
A 2 M . A 2-dimensional lft with real coe�cients is a function from

R1 � R1 to R1 with the general form

t
a c e g

b d f h

!(x; y) = axy + cx+ ey + g

bxy + dx+ fy + h
(3)

where

a c e g

b d f h

!
2 T.

In homogeneous coordinates, a 1-dimensional lft reduces to matrix multiplication

t0@ a c

b d

1
A : R1 ! R1

p

q

!
7!

ap + cq

bp+ dq

!
:

Therefore, it is convenient to drop the t in Equations (1), (2) and (3), We will also refer

to the coe�cients of a 0-dimensional lft as a vector, the coe�cients of a 1-dimensional lft

as a matrix and the coe�cients of a 2-dimensional lft as a tensor.

De�nition 2.2 The information Info(P) contained by an arbitrary lft P is the interval

in R1 de�ned by Info(V) = fV g, Info(M) = M([0;1]) and Info(T) = T ([0;1]; [0;1]).

Consider a vector V as a pair of numbers denoted (V0; V1),
a

b

!
� (a; b)

3

and consider a matrix M as a pair of vectors denoted (M0;M1),0
@ a c

b d

1
A �

a

b

!
;

c

d

!!

� ((a; b); (c; d));

and consider a tensor T as a pair of matrices denoted (T0; T1),

a c e g

b d f h

!
�

0
@
0
@ a c

b d

1
A ;

0
@ e g

f h

1
A
1
A

�

a

b

!
;

c

d

!!
;

e

f

!
;

g

h

!!!

� (((a; b); (c; d)); ((e; f); (g; h))):

The �rst important observation is that Info(P) is computationally easy to evaluate.

The endpoints of the interval Info(P) (provided it has any) correspond to a particular

pair of the vectors that make up the coe�cients. For a matrix M =

0
@ a c

b d

1
A, we have

Info(M) =

8<
:
h
a
b
; c
d

i
if det(M) < 0h

c
d
; a
b

i
if det(M) > 0

and for a tensor T =

a c e g

b d f h

!
, we have

Info(T) = Info

0
@
0
@ a c

b d

1
A
1
A[Info

0
@
0
@ e g

f h

1
A
1
A[Info

0
@
0
@ a e

b f

1
A
1
A[Info

0
@
0
@ c g

d h

1
A
1
A :

De�nition 2.3 An arbitrary lft P satis�es the re�nement property, denoted R(P), if

the coe�cients of P are all non-negative or all non-positive.

Let us de�ne V+ = fV 2 V : R(V)g, M + = fM 2 M : R(M)g and T+ = fT 2 T :

R(T)g.
The second important observation is that Info(P) � [0;1] if and only if P satis�es

the re�nement property.

Therefore, the composition Q � P of arbitrary lft's P and Q where P satis�es the

re�nement property corresponds to interval re�nement. This is because, in this case,

Info(Q � P) � Info(Q). In other words, P re�nes the information given by Q.

4

3 Normal Products

Proposition 3.1 Given two rational intervals I = Info(M) and J = Info(N) represented

by the two matrices M and N , then I � J if and only if there exists a matrix K with

integer coe�cients satisfying the re�nement property such that M = NK.

Therefore any real number can be represented as the intersection

\
n�0

M0M1M2 : : :Mn([0;1])

for a sequence of matrices Mn where Mn satis�es the re�nement property for n � 1. We

can denote this real number by an in�nite product of matrices

0
@ a0 c0

b0 d0

1
A :

0
@ a1 c1

b1 d1

1
A :

0
@ a2 c2

b2 d2

1
A : � � � (4)

where Mn =

0
@ an cn

bn dn

1
A and M0 2 M and Mn 2 M + with n � 1. We will call this

an in�nite normal product. Notice however that an in�nite normal product does not in

general represent a point, although it always represents an interval. However, we are

only interested in in�nite normal products that converge to a point. We will call the �rst

matrix M0 the sign matrix and the others matrices Mn with n � 1 we will call the digit

matrices. A singular matrix is in fact a constant that can be replaced by a vector, thus

terminating the product; this we will call a �nite normal product. Thus, a �nite normal

product represents a rational number, whereas an in�nite normal product may represent

any number.

The characteristic of a normal product is that the sign matrix identi�es the interval in

R1 of interest, while the digit matrices re�ne this interval to a point. Therefore, we can

consider two types called signed normal products (snp) and unsigned normal products

(unp). So, we can think of a signed normal product as a sign matrix followed by an

unsigned normal product. Additionally, an unsigned normal product consists of a digit

matrix followed by an unsigned normal products recursively. So, signed normal products

represent real numbers in R1 , while unsigned normal products represent real numbers in

[0;1]. In BNF, we have

snp0 ::= � j � : unp�(0;�) where � 2 �v(0) and � 2 �m(0)

unp� ::=
 j � : unp�(�;�) where
 2 �v(�) and � 2 �m(�) and � � 1:

We call �v(�) and �m(�) the state sets. They contain the next allowable vectors and

matrices in the normal product given that we are in state � . The initial state is 0.

Therefore �v(0) and �m(0) contain the allowable sign vectors and matrices. �(�;M) is

called the state transition function and speci�es the next state given that the previous

state is � and the previous matrix in the normal product is M . Taken together, the

5

state sets and the state transition function restrict the allowable sequences of vectors and

matrices in a normal product.

For the most general normal product we de�ne the state sets to be

�v(0) = V

�v(1) = V+

�m(0) = M

�m(1) = M +

and the state transition function �(�;M) by

�(�;M) � = 0 � = 1

M 2 �m(0) 1

M 2 �m(1) 1

This notation may seem excessive at this point, but it will prove useful when we de�ne

various notions of exact
oating point later.

4 Expression Trees

Let us generalise normal products even further to expression trees by including tensors.

We can do this by constructing signed expression trees (sexp) and unsigned expression

trees (uexp) according to the BNF prescription

sexp ::= V j M (uexp) j T(uexp; uexp)
uexp ::= V+ j M +(uexp) j T+(uexp; uexp):

If an expression E is a vector then it simply represents a rational number.

If an expression E is a matrix M applied to another expression E 0 then it represents

an interval which is a subset of Info(M). The information in the matrixM can be re�ned

by incorporating information from the expression E 0 according to equations (5) and (6).

We call this process matrix absorption.

If an expression E is a tensor T applied to two other expressions E 0 and E 00 then it

represents an interval which is a subset of Info(T). Again, the information in the tensor

T can be re�ned by incorporating information from the expressions E 0 and E 00 according

to the equations (7) to (10). We call this process tensor absorption.

What happens if we meet a tensor in a subexpression? Absorption equations could

be devised to cater for this scenario. However, this would lead to higher dimensional lft's

and increased complexity. A solution is to force subexpression tensors to output infor-

mation in the form of matrices that re
ect the information contained in them according

to equation (11). We call this process tensor emission.

6

5 Absorption and Emission Equations

In order to simplify composition of lft's of various dimensions, we de�ne the dot product,

the left product and the right product, denoted respectively by �, Li and Ri as follows:

(M � V)i =
X
j=0;1

MijVj

(M �N) = (M �N0;M �N1)

(M � T) = (M � T0;M � T1)
T RiV = (T0 � V; T1 � V)
T RiM = (T0 �M;T1 �M)

T LiV = TT RiV

T LiM = (TT RiM)T

where TT indicates the transpose of T de�ned by swapping its middle two columns.

Note that dot product is just conventional matrix multiplication. Let us also de�ne the

mediant of a matrix by 0
@ a c

b d

1
A =

a+ c

b+ d

!
:

Proposition 5.1 The following matrix absorption equations hold:

M(V) = M � V (5)

M(N(x)) = (M �N)(x) (6)

The following tensor absorption equations hold:

T (V; y) =

(
T LiV if jT LiV j = 0

(T LiV)(y) if jT LiV j 6= 0
(7)

T (M(x); y) = (T LiM)(x; y) (8)

T (x; V) =

(
T RiV if jT RiV j = 0

(T RiV)(x) if jT RiV j 6= 0
(9)

T (x;M(y)) = (T RiM)(x; y): (10)

Proof Here is the proof for one of the absorption equations:

T (x; V) =

a c e g

b d f h

!
x;

i

j

!!

=
aix
j
+ cx+ ei

j
+ g

bix
j
+ dx+ fi

j
+ h

=
aix + cjx + ei + gj

bix + djx+ fi+ hj

=

0
@ ai+ cj ei + gj

bi + dj fi+ hj

1
A (x)

7

=

0
@
0
@ a c

b d

1
A �

i

j

!
;

0
@ e g

f h

1
A �

i

j

!1
A (x)

= (T0 � V; T1 � V)(x)
= (T RiV)(x)

=

(
T RiV if jT RiV j = 0

(T RiV)(x) if jT RiV j 6= 0

Note that the left and right products of a tensor with a vector may give a singular

matrix, which is essentially a vector given by it's mediant. �

The third important observation is that given a matrix M and an arbitrary lft P ,

Info(M) � Info(P) if and only if R(M�1 �P) where M�1 is the matrix inverse of M . The

scaling invariance of lft's means that we can simplify the de�nition of the matrix inverse

to 0
@ a c

b d

1
A
�1

=

0
@ d �c
�b a

1
A :

Proposition 5.2 The following emission equations hold:

V = E(E�1 � V) if Info(E) � Info(V)

M(x) = E((E�1 �M)(x)) if Info(E) � Info(M)

T (x; y) = E((E�1 � T)(x; y)) if Info(E) � Info(T)

(11)

The conditions are necessary in order to ensure that (E�1 � V), (E�1 �M) and (E�1 � T)
satisfy the re�nement property.

Note that the fundamental aspects of these absorption and emission equations are

essentially well known [18]. The novel aspects include the introduction of vectors and, very

importantly, the repeated insistence on lft's satisfying the re�nement property leading to

a computationally e�cient test for interval inclusion.

6 Tensor Absorption Strategy

For computing the value of T (x; y), we need a strategy for deciding whether to absorb

from x (left absorption) or from y (right absorption). All we know about x and y is that

they are non-negative real numbers. So, what we need is a function strategy(T) which

evaluates to left, right or either. By convention, we choose left absorption when we

have a free choice. This enables algorithms to be made in the knowledge that there is a

preferred absorption direction. See the tan(x) example in section 12.

8

6.1 The Outcome Minimisation Strategy

One approach is to minimise the possible range of outcomes. The range of outcomes for

a left absorption is given by

L(T) = sup

(
d

ax + e

bx + f
;
cx+ g

dx + h

!
: x 2 [0;1]

)

and the range of outcomes for a right absorption is given by

R(T) = sup

(
d

ay + c

by + d
;
ey + g

fy + h

!
: y 2 [0;1]

)

where d(x; y) is a suitable metric such as

d(x; y) =

����� x

x + 1
� y

y + 1

����� :
The exact formula involves a square root. However, a good approximation in practice

for L(T) and R(T), which is exact in many cases, is given by

L(T) � width(J � TT)
R(T) � width(J � T)

where

J =

0
@ 1 0

1 1

1
A

width(T) = max fjT0(0)� T1(0)j; jT0(1)� T1(1)jg :

So, the strategy is:

strategy(T) =

8>><
>>:

left if L(T) < R(T)

either if L(T) = R(T)

right if L(T) > R(T)

6.2 The Information Overlap Strategy

An alternative approach is to consider the pairs of matrices in tensor T and the pairs of

matrices in tensor TT.

During left absorption the information in each of the matrices in tensor TT is re�ned,

while during right absorption the information in each of the matrices in tensor T is re�ned.

Absorption is more e�ective if the pair of matrices under consideration have overlap-

ping information because then the overall information re�nement for the tensor is likely

to be more dramatic on average. A more important observation is that absorption even-

tually leads to an empty intersection of information thus ensuring that the strategy is

fair.

9

Let us de�ne the function overlap(T) by

overlap : T ! boolean

T 7! Info(T0) \ Info(T1) 6= ;

Given T =

a c e g

b d f h

!
, it can be shown that the boolean expression

Info(T0) \ Info(T1) = ;

is equivalent to

Info

0
@
0
@ d �c

b �a

1
A �

0
@ e g

f h

1
A
1
A � (0;1):

It is always the case that at least one of overlap(T) and overlap(TT) is true.

Therefore, a straightforward strategy is:

strategy(T) =

8>><
>>:

left if not overlap(T)

either if overlap(T) and overlap(TT)

right if not overlap(TT)

7 Unbiased Exact Floating Point

Storing a real number as a general normal product may be e�cient in certain cases, but

in general we need to ensure that the digit matrices in an in�nite normal product re�ne

the sign matrix at a steady rate. Also, we need a way to control the size of the integer

coe�cients in tensors. Both these objectives can be achieved by restricting the state sets.

In particular, we put forward the following important representation that we shall call

base B unbiased exact
oating point

S� : D
B
d1
: DB

d2
: DB

d3
: � � �

where

� 2 S= f+;1;�; 0g
di 2 D = fn� B;B � n : n 2 N \ [1; B]g

S+ =

0
@ 1 0

0 1

1
A

S1 =

0
@ 1 1

�1 1

1
A

S� =

0
@ 0 �1

1 0

1
A

10

S0 =

0
@ 1 �1

1 1

1
A

DB
d =

0
@ B + d+ 1 B + d� 1

B � d� 1 B � d+ 1

1
A :

Therefore S� is the sign matrix while DB
di

for i � 1 make up the digit matrices in

base B. If the digit matrices begin with a block of n DB
1�B's or D

B
B�1's, we call this the

exponent because it indicates the order of magnitude of the real number in question. The

rest of the digit matrices is called the mantissa.

The sign matrices have been chosen such that they divide R1 in a natural, unbiased

and redundant manner; Info(S+) = [0;1], Info(S1) = [1;�1], Info(S�) = [1; 0] and

Info(S0) = [�1; 1]. Recall that redundancy is important for computability. Also, they

have positive determinants, which is convenient for implementation, and form a cyclic

group (up to scaling invariance)

S0
1 = S+

S1
1 = S1

S2
1 = S�

S3
1 = S0

S4
1 = S0

1;

which is mathematically useful for deriving algorithms.

The digit matrices satisfy the following property, which is reminiscent of redundant

sequences of digits proposed by Avizienis [1].

DB
d1
�DB

d2
� : : : �DB

dn
=

0
@ Bn +m+ 1 Bn +m� 1

Bn �m� 1 Bn �m + 1

1
A

where

m =
nX
i=1

diB
n�i:

In fact, the sign matrix S0 followed by D2
d1

: D2
d2

: D2
d3

: � � � corresponds exactly to

redundant sequences of binary digits as pointed out by Nielsen et al [18]. The novelty

here is that we extend the representation to any base B and to the other three signs; +,

1 and �. For S0, we have

S0D
B
d1
�DB

d2
� : : : �DB

dn
=

0
@ m+ 1 m� 1

Bn Bn

1
A

Info(S0D
B
d1
�DB

d2
� : : : �DB

dn
) =

�
m� 1

Bn
;
m+ 1

Bn

�
: (12)

11

The origin of DB
d becomes clearer when we consider the following commutative dia-

gram:

[0;1]
DB

d- [0;1]

[�1; 1]

S0

? RB
d- [�1; 1]

?

S0

where

RB
d = S0 �DB

d � S�10

=

0
@ 1 �1

1 1

1
A �

0
@ B + d+ 1 B + d� 1

B � d� 1 B � d+ 1

1
A �

0
@ 1 1

�1 1

1
A

=

0
@ 1 d

0 B

1
A

RB
d (x) =

x + d

B

So, RB
d are the standard a�ne maps corresponding to the digits in the the represen-

tation of the real numbers over the interval [�1; 1] by redundant sequences of digits. In

particular, R2
�1 maps [�1; 1] to the left half [�1; 0], R2

0 maps [�1; 1] to the middle half

[�1
2
; 1
2
] and R2

1 maps [�1; 1] to the right half [0; 1].

So, the state sets for unbiased exact
oating point are

�v(0) = ;
�v(1) = ;
�m(0) = fS� : � 2 Sg
�m(1) = fDB

n : n 2 D g
and the state transition function �(�;M) is given by

�(�;M) � = 0 � = 1

M 2 �m(0) 1

M 2 �m(1) 1

A useful hybrid between general normal products and unbiased exact
oating point

involves setting �v(0) and �v(1) to

�v(0) =

(
a

b

!
:

a

b

!
2 V and jaj; jbj <

)

�v(1) =

(
a

b

!
:

a

b

!
2 V+ and jaj; jbj <

)

12

where
 may correspond to the maximum integer that �ts into a computer word.

Interesting bases include 2 with digits f�1; 0; 1g and the golden ratio � = 1+
p
5

2
with

digits f1� �; �� 1g [19, 6].
This representation of the real numbers leads to e�cient algorithms for a wide range

of operations including the transcendental functions. The only exception is for addition

and subtraction. In which case, we need biased exact
oating point.

8 Biased Exact Floating Point

Biased exact
oating point leads to e�cient algorithms for addition and subtraction that

are essentially the same as those for redundant sequences of digits with the added bene�t

of incrementality even at the exponent level. This means that in�nity can be handled as

if it were any other real number.

We restrict the allowable sequences of matrices as follows8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

S+ :

(
L

H : X� : Fn

)

S1 : Z� :

(
I : X� : Fn

Î : X̂� : F̂n

)

S� :

(
L̂

Ĥ : X̂� : F̂n

)

S0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

8>><
>>:

DB
1�B
...

DB
B�1

9>>=
>>;

�

where M� indicates zero or more occurrences ofM and

(
P

Q

)
indicates a choice between

the sequences P and Q and

n 2 F = N \ [1; B)

L =

0
@ 2 0

1 1

1
A

H =

0
@ B 1

0 1

1
A

X =

0
@ B2 B � 1

0 B

1
A

Fn =

0
@ n + 1 n� 1

B B

1
A

I =

0
@ B 0

B 2

1
A

Z =

0
@ B + 1 B � 1

B � 1 B + 1

1
A

13

\
0
@ a c

b d

1
A =

0
@ d b

c a

1
A :

These matrices are such that once we reach the matrices DB
1�B to DB

B�1 the nested

intervals correspond to conventional B-adic intervals (as in equation (12)). The following

properties can be easily derived:

Info(S+L) = [0; 2]

Info(S+HXe) = [Be;1]

Info(S+HXeFn) = [nBe; (n+ 2)Be]

Info(S1Z
e) = [Be;�Be]

Info(S1Z
eI) = [Be;1]

Info(S1Z
eÎ) = [1;�Be]

Info(S�L̂) = [�2; 0]
Info(S�ĤX̂e) = [1;�Be]

Info(S�ĤX̂eF̂n) = [�(n + 2)Be;�nBe]:

It should be pointed out that Nielsen et al [18] considered a similar idea for quasi-

normalised
oating point. However, we restrict the digit matrices to ones satisfying the

re�nement property. This means that our algorithms for interval inclusion are much more

e�cient. Also, our representation includes three types of in�nity; namely positive in�nity,

negative in�nity and an in�nity with an unknown sign. This means that an algorithm for

addition can emit matrices without necessarily �rst absorbing the entire exponent part

of the two arguments.

To summerise, the state sets are

�v(n) = ;
�m(0) = fS� : � 2 Sg
�m(1) = fDB

n : n 2 D g
�m(2) = fL;Hg
�m(3) = fI; Z; Îg
�m(4) = fL̂; Ĥg
�m(5) = fXg [fFn : n 2 Fg
�m(6) = fX̂g [fF̂n : n 2 Fg

14

and the state transition function �(�;M) is given by

�(�;M) � = 0 � = 1 � = 2 � = 3 � = 4 � = 5 � = 6

M = S+ 2

M = S1 3

M = S� 4

M = S0 1

M = DB
n 1

M = L 1

M = H 5

M = I 5

M = Z 3

M = Î 6

M = L̂ 1

M = Ĥ 6

M = X 5

M = Fn 1

M = X̂ 6

M = F̂n 1

9 Normalisation Algorithms

In this section, we describe a basic set of lazy functions that allow signed normal products

to be generated from

(0-dimensional lft) rational numbers,

(1-dimensional lft) matrices applied to signed general normal products and

(2-dimensional lft) tensors applied to signed general normal products.

The signed normal products generated follow the restrictions speci�ed by the state

sets �v(�) and �m(�) for � 2 N and the state transition function �(�;M) for � 2 N and

M 2 M .

9.1 Vector Algorithm

The expression svector0(V) evaluates the vector V 2 V to a signed normal product.

svector0 : V ! snp0

V 7! V if V 2 �v(0)

V 7! S : uvector�(0;S)(S
�1 � V)

if 9S 2 �m(0) such that Info(S) � Info(V)

15

In words, if V is an allowable sign vector then it is left unchanged otherwise �nd a sign

matrix S that can be emitted and continue with the remainder.

The expression uvector� (V) evaluates the vector V 2 V+ to a state � unsigned normal

product.

uvector� : V
+ ! unp�

V 7! V if V 2 �v(�)

V 7! D : uvector�(�;D)(D
�1 � V)

if 9D 2 �m(�) such that Info(D) � Info(V)

In words, if V is an allowable digit vector in state � then leave it unchanged otherwise

�nd a digit matrix D that can be emitted in this state and continue with the remainder.

9.2 Matrix Algorithm

The expression smatrixs0(M;Ex) evaluates the matrix M 2 M and the signed general

normal product Ex to a signed normal product.

smatrixs0 : M � sexp ! snp0

(M;Vx) 7! svector0(M � Vx)
(M;Sx : Ux) 7! smatrixu0(M � Sx; Ux)

In words, the signed part of the signed general normal product Ex must be absorbed

into M before any further steps can be taken.

The expression smatrixu0(M;Ex) evaluates the matrix M 2 M and the unsigned

general normal product Ex to a signed normal product.

smatrixu0 : M � uexp ! snp0

(M;Vx) 7! M : uvector�(0;M)(Vx) if M 2 �m(0)

(M;Dx : Ux) 7! M : umatrixu�(0;M)(Dx; Ux) if M 2 �m(0)

(M;Ex) 7! S : umatrixu�(0;S)(S
�1 �M;Ex)

if 9S 2 �m(0) such that Info(S) � Info(M)

(M;Vx) 7! svector0(M � Vx)
(M;Dx : Ux) 7! smatrixu0(M �Dx; Ux)

In words, if M is an allowable sign matrix then it is left unchanged otherwise try to �nd

a sign matrix S that can be emitted and continue with the remainder. Otherwise, more

information must be absorbed from Ex.

The expression umatrixu� (M;Ex) evaluates the matrix M 2 M + and the unsigned

general normal product Ex to a state � unsigned normal product.

umatrixu� : M
+ � uexp ! unp�

16

(M;Vx) 7! M : uvector�(�;M)(Vx) if M 2 �m(�)

(M;Dx : Ux) 7! M : umatrixu�(�;M)(Dx; Ux) if M 2 �m(�)

(M;Ex) 7! D : umatrixu�(�;D)(D
�1 �M;Ex)

if 9D 2 �m(�) such that Info(D) � Info(M)

(M;Vx) 7! uvector� (M � Vx)
(M;Dx : Ux) 7! umatrixu� (M �Dx; Ux)

In words, if M is an allowable digit matrix in state � then it is left unchanged otherwise

try to �nd a digit matrix D that can be emitted in this state and continue with the

remainder. Otherwise, more information must be absorbed from Ex.

9.3 Tensor Algorithm

The expression stensors0(T;Ex; Ey) evaluates the tensor T 2 T and the signed general

normal products Ex and Ey to a signed normal product.

stensors0 : T � sexp� sexp ! snp0

(T; Vx; Vy) 7!
(

svector0(T LiVx) if jT LiVxj = 0

svector0(T LiVx � Vy) if jT LiVxj 6= 0

(T; Vx; Sy : Uy) 7!
(

svector0(T LiVx) if jT LiVxj = 0

smatrixu0(T LiVx � Sy; Uy) if jT LiVxj 6= 0

(T; Sx : Ux; Vy) 7!
(

svector0(T RiVy) if jT RiVyj = 0

smatrixu0(T RiVy � Sx; Ux) if jT RiVyj 6= 0

(T; Sx : Ux; Sy : Uy) 7! stensoru0(T LiSx RiSy; Ux; Uy)

In words, the signed part of the signed general normal products Ex and Ey must be

absorbed into T before any further steps can be taken.

The expression stensoru0(T;Ex; Ey) evaluates the tensor T 2 T and the unsigned

general normal products Ex and Ey to a signed normal product.

stensoru0 : T � uexp� uexp ! snp0

(T;Ex; Ey) 7! S : utensoru�(0;S)(S
�1 � T;Ex; Ey)

if 9S 2 �m(0) such that Info(S) � Info(T)

if strategy(T) 6= right then

(T; Vx; Uy) 7!
(

svector0(T LiVx) if jT LiVxj = 0

smatrixu0(T LiVx; Uy) if jT LiVxj 6= 0

(T;Dx : Ux; Uy) 7! stensoru0(T LiDx; Ux; Uy)

if strategy(T) = right then

(T; Ux; Vy) 7!
(

svector0(T RiVy) if jT RiVyj = 0

smatrixu0(T RiVy; Ux) if jT RiVyj 6= 0

(T; Ux; Dy : Uy) 7! stensoru0(T RiDy; Ux; Uy)

17

In words, try to �nd a sign matrix S that can be emitted and continue with the remainder.

Otherwise, more information must be absorbed from Ex or Ey according to the value of

strategy(T). If strategy(T) = right then absorb from Ey otherwise absorb from Ex.

The expression utensoru� (T;Ex; Ey) evaluates the tensor T 2 T+ and the unsigned

general normal products Ex and Ey to a state � unsigned normal product.

utensoru� : T
+ � uexp� uexp ! unp�

(T;Ex; Ey) 7! D : utensoru�(�;D)(D
�1 � T;Ex; Ey)

if 9D 2 �m(x) such that Info(D) � Info(T)

if strategy(T) 6= right then

(T; Vx; Uy) 7!
(

uvector� (T LiVx) if jT RiVxj = 0

umatrixu� (T LiVx; Uy) if jT RiVxj 6= 0

(T;Dx : Ux; Uy) 7! utensoru� (T LiDx; Ux; Uy)

if strategy(T) = right then

(T; Ux; Vy) 7!
(

uvector� (T RiVy) if jT RiVyj = 0

umatrixu� (T RiVy; Ux) if jT RiVyj 6= 0

(T; Ux; Dy : Uy) 7! utensoru� (T RiDy; Ux; Uy)

In words, try to �nd a digit matrix D that can be emitted in state � and continue with

the remainder. Otherwise, more information must be absorbed from Ex or Ey according

to the value of strategy(T). If strategy(T) = right then absorb from Ey otherwise absorb

from Ex.

10 Flatten Algorithm

The basic set of functions above have to be used with care particularly where recursion

is involved.

For example, consider
p
2. If we de�ne the sqrt2 recursively by

sqrt2 = smatrixs0

0
@
0
@ 1 2

1 1

1
A ; sqrt2

1
A

then it will never output anything and never terminate.

If however, we de�ne the sqrt2 recursively by

sqrt2 = smatrixu0(S+; x) where x =

0
@ 1 2

1 1

1
A : x

then it evaluates the answer as expected.

In general, given a mathematical formula we must be able to construct a signed

expression tree and evaluate it in the following way using the function s
atten.

s
atten : sexp ! snp0

18

V 7! svector0(V)

M(Ex) 7! smatrixu0(M; u
atten(Ex))

T (Ex; Ey) 7! stensoru0(T; u
atten(Ex); u
atten(Ey))

u
atten : uexp ! uexp

V 7! V

M(Ex) 7! M(u
atten(Ex))

T (Ex; Ey) 7! utensoru1(T; u
atten(Ex); u
atten(Ey)):

Note that state 1 in utensoru1 can be replaced by any valid non-zero state. In words,

the function u
atten merely
attens an unsigned expression tree into a general normal

product while the function s
atten
attens a signed expression tree into a more speci�c

normal product. The speci�c normal product is controlled by the state sets �v(�) and

�m(�) for � 2 N and the state transition function �(�;M) for � 2 N and M 2 M .

So, for the simple example
p
2, we can de�ne the expression tree sqrt2 recursively by

sqrt2 =

0
@ 1 2

1 1

1
A (sqrt2)

and then s
atten(sqrt2) will convert it to the required normal product. For the general

normal product, it remains unchanged. For unbiased exact
oating point in base 2, the

output is not unique due to redundancy in the representation, but it may look something

like

S+ : D2
0 : D

2
1 : D

2
�1 : D

2
1 : D

2
0 : D

2
�1 : D

2
0 : D

2
0 : D

2
0 : D

2
0 : D

2
�1 : : : :

which represents the interval
h
1199
849

; 1200
848

i
thus far. For biased exact
oating point in base

2, the output is also not unique due to redundancy in the representation, but it may look

something like

S+ : L : D2
1 : D

2
�1 : D

2
1 : D

2
0 : D

2
1 : D

2
0 : D

2
1 : D

2
0 : D

2
0 : D

2
0 : : : :

which represents the interval
h
1447
1024

; 1449
1024

i
thus far.

11 Basic Arithmetic Operations

As already mentioned, we can consider the application of a 1-dimensional lft to a normal

product as an arithmetic operation:

Mneg(x) =

0
@ �1 0

0 1

1
A (x) = �x

Mrec(x) =

0
@ 0 1

1 0

1
A (x) =

1

x

19

Given a general 1-dimensional lft M(x), we can simply use the function smatrixs0(M;x)

to evaluate the result. So, negation and reciprocal can be de�ned by

sneg : sexp ! snp0

x 7! smatrixs0(Mneg; x)

srec : sexp ! snp0

x 7! smatrixs0(Mrec; x)

Gosper [7] devised algorithms for the elementary arithmetic operations on continued

fractions [22] using 2-dimensional lft's. The four most basic arithmetic operations can be

represented as follows:

Tadd(x; y) =

0 1 1 0

0 0 0 1

!
(x; y) = x + y

Tsub(x; y) =

0 1 �1 0

0 0 0 1

!
(x; y) = x� y

Tmul(x; y) =

1 0 0 0

0 0 0 1

!
(x; y) = x� y

Tdiv(x; y) =

0 1 0 0

0 0 1 0

!
(x; y) = x � y

So, these operations can be de�ned by

sadd : sexp� sexp ! snp0

(x; y) 7! stensors0(Tadd; x; y)

ssub : sexp� sexp ! snp0

(x; y) 7! stensors0(Tsub; x; y)

smul : sexp� sexp ! snp0

(x; y) 7! stensors0(Tmul; x; y)

sdiv : sexp� sexp ! snp0

(x; y) 7! stensors0(Tdiv; x; y)

12 Continued Fractions

The development

a0 +
1

a1 +
1

a2 +
1

a3 + � � �

(13)

20

is called a simple continued fraction [3, 11].

The quantity

rn = a0 +
1

a1 +
1

a2 + � � �+ 1

an

(14)

is called the nth approximant. The 0th approximant is a0. If the sequence rn converges

to a real number r then the continued fraction is said to be convergent and represent the

number r.

Using the lft's

Mn(x) =

0
@ an 1

1 0

1
A (x) = an +

1

x
(15)

we can generate the continued fraction in equation (13). Therefore, a continued fraction

with non-negative coe�cients for n � 1 corresponds to the general normal product

M0 : M1 : M2 :M3 : : : :

Observe that (M0 �M1 �M2 � : : : �Mn)([1;�1]) = (N0 �N1 �N2 � : : : �Nn)([0;1]) where

Nn=0 = M0 � S1 =

0
@ a0 � 1 a0 + 1

1 1

1
A

Nn�1 = S�11 �Mn � S1 =

0
@ an � 2 an

an an + 2

1
A :

We can see this more clearly in the following commutative diagram:

[1;�1] �M0
[1;�1] �M1

[1;�1] �M2
[1;�1]

I@
@
@
@
@

N0

[0;1]

S1

6

�N1
[0;1]

S1

6

�N2
[0;1]

S1

6

. . . .

Therefore, a continued fraction with janj � 2 for n � 1 corresponds to the general

normal product

N0 : N1 : N2 : N3 : : : :

For example, a known formula for tan(x) equates to

an=0 = 0

an�1 = (�1)n+12n� 1

x
:

21

This leads to

Nn=0 =

0
@ �1 1

1 1

1
A

Nn�1 =

0
@ 2n� 1 + (�1)n2x 2n� 1

2n� 1 2n� 1� (�1)n2x

1
A :

Therefore, we can derive the following expression tree for tan(S0 : x)

tan : sexp ! sexp

S0 : x 7!

1 1 �1 �1
0 2 2 0

!
(x; iterate(iterator; 0; x))

iterate : (N ! T+)� N � uexp ! uexp

(T; n; x) 7! T (n)(x; iterate(T; n+ 1; x))

iterator : N ! T+

n 7!

8>>>>><
>>>>>:

2n + 5 2n+ 3 2n+ 1 2n+ 3

2n + 3 2n+ 1 2n+ 3 2n+ 5

!
if n even

2n + 1 2n+ 3 2n+ 5 2n+ 3

2n + 3 2n+ 5 2n+ 3 2n+ 1

!
if n odd

Observe how the recursion has been de�ned in order to take advantage of the prefer-

ence for left absorption in the tensor absorption strategies.

For example, consider tan(tan(1=3)). Represent 1=3 by

1

3

!
. We �rst emit a sign

matrix such as S0 :

2

1

!
. Therefore tan(1=3) reduces to

1 1 �1 �1
0 2 2 0

!
2

1

!
; iterate

iterator; 0;

2

1

!!!
:

This leads to 0
@ 1 1

2 4

1
A

iterate

iterator; 0;

2

1

!!!
:

via left absorption because strategy

1 1 �1 �1
0 2 2 0

!!
= either and left absorption

is the preferred direction. Again we need a sign matrix and so this reduces to

S0 :

0
@ 3 5

1 3

1
A iterate

iterator; 0;

2

1

!!!
:

Hence tan(tan(1=3)) reduces to the signed expression tree
1 1 �1 �1
0 2 2 0

!
(x; iterate(iterator; 0; x))

22

where

x =

0
@ 3 5

1 3

1
A

iterate

iterator; 0;

2

1

!!!
:

Finally, we apply the function s
atten for biased exact
oating point in base 2 to this

signed expression tree. The output is not unique due to redundancy in the representation,

but it may look something like

S+ : L+ : D2
�1 : D

2
�1 : D

2
1 : D

2
0 : D

2
0 : D

2
�1 : D

2
0 : D

2
0 : D

2
1 : D

2
�1 : : : :

which represents the interval
h
369
1024

; 370
1024

i
thus far.

A survey of various other mathematical functions in the form of general normal prod-

ucts has been made by Potts [20].

13 Conclusion

In conclusion, may we draw attention to the novel ideas expressed in this document.

� The use of vectors to represent rational number �nitely in this setting.

� The special role of [0;1] in representing information in an lft.

� The special role of the re�nement property leading to the notion of a normal product

and an extremely e�cient test for interval inclusion.

� The outcome minimisation and information overlap tensor absorption strategies.

� Arbitrary base unbiased exact
oating point; provides an especially e�cient way

to control the
ow of information and the size of the integer coe�cients. Roughly

speaking the size of the integer coe�cients increases linearly with the number of

emitted digits.

� Arbitrary base biased exact
oating point; creates the opportunity to add and

subtract two real numbers by the manipulation of symbols and a bounded state

variable.

� The
atten algorithm; this brings together many of the above ideas into a complete

algorithm.

� Transformation of continued fractions into normal products.

References

[1] Algirdas Avizienis. Signed-digit number representations for fast parallel arithmetic.

IRE Transactions on electronic computers, (10):389{400, 1961.

23

[2] H.J. Boehm and R. Cartwright. Exact real arithmetic: Formulating real numbers as

functions. In D. Turner, editor, Research Topics in Functional Programming, pages

43{64. Addison-Wesley, 1990.

[3] Claude Brezinski. History of Continued Fractions and Pad�e Approximants, vol-

ume 12 of Springer series in Computational mathematics. Springer-Verlag, 1991.

[4] M. H. Escard�o. PCF extended with real numbers. Theoretical Computer Science,

162(1):79{115, August 1996.

[5] Pietro Di Gianantonio. Real Number Computability and Domain Theory. In Proceed-

ings of the 18th International Symposium on Mathematical Foundations of Computer

Science, pages 413{422, Gdansk, Poland, September 1993. LNCS 711.

[6] Pietro Di Gianantonio. A Golden Ratio Notation for the Real Numbers. Technical

report, CWI Amsterdam, 1996.

[7] R. W. Gosper. Continued Fraction Arithmetic. Technical Report HAK-

MEM Item 101B, MIT AI MEMO 239, MIT, February 1972. Available from

ftp://ftp.netcom.com/pub/hb/hbaker/hakmem.

[8] A. Grzegorczyk. On the de�nition of computable real continuous functions. Fund.

Math., 44:61{77, 1957.

[9] IEEE. IEEE Standard 754 for Binary Floating-Point Arithmetic. SIGPLAN,

22(2):9{25, 1985.

[10] Simon L. Peyton Jones. Arbitrary precision arithmetic using continued fractions,

1984. INDRA Note 1530, University College London.

[11] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, vol-

ume 2. Addison-Wesley, 1981.

[12] Peter Kornerup and David W. Matula. An On-line Arithmetic Unit for Bit-Pipelined

Rational Arithmetic. Journal of Parallel and Distributed Computing, 5(3):310{330,

1988.

[13] Peter Kornerup and David W. Matula. Exploiting Redundancy in Bit-Pipelined Ra-

tional Arithmetic. In Proceedings of the 9th IEEE Symposium on Computer Arith-

metic, pages 119{126, Santa Monica, 1989. IEEE Computer Society Press.

[14] Peter Kornerup and David W. Matula. An Algorithm for Redundant Binary Bit-

Pipelined Rational Arithmetic. IEEE Transactions on Computers, C-39(8):1106{

1115, 1990.

24

[15] Peter Kornerup and David W. Matula. Finite Precision Lexicographic Continued

Fraction Number Systems. In Proceedings of the 7th IEEE Symposium on Computer

Arithmetic, pages 207{214, Urbana, 1995. IEEE Computer Society Press.

[16] V. Menissier-Morain. Arbitrary precision real arithmetic: design and algorithms.

submitted to J. Symbolic Computation, 1996.

[17] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�s, 1966.

[18] Asger Munk Nielsen and Peter Kornerup. MSB-First Digit Serial Arithmetic. Journal

of Universal Computer Science, 1(7):527{547, July 1995.

[19] W. Parry. On the �-expansions of real numbers. Acta Mathematica, Acad. Sci.

Hung., 11:401{416, 1960.

[20] P. J. Potts. Computable Real Arithmetic using Linear Fractional Transforma-

tions, June 1996. Early draft PhD Thesis, Imperial College, available from

http://www-tfm.doc.ic.ac.uk/~pjp.

[21] J. Vuillemin. Exact real computer arithmetic with continued fractions. IEEE Trans-

actions on computers, 39(8):1087{1105, August 1990.

[22] H. S. Wall. Analytic Theory of Continued Fractions. Chelsea Publishing Company,

1948.

[23] Osaaki Watanuki and Milos D. Ercegovac. Error Analysis of Certain Floating-Point

On-Line Algorithms. IEEE Transactions on Computers, C-32(4):352{358, April

1983.

25

